The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, providing the reader with a firm grasp of the concepts and techniques of this beautiful area of mathematics. Topics covered include the upper half-space model of the hyperbolic plane, Möbius transformations, the general Möbius group and the subgroup preserving path length in the upper half-space model, arc-length and distance, the Poincaré disc model, convex subsets of the hyperbolic plane, and the Gauss-Bonnet formula for the area of a hyperbolic polygon and its applications. This updated second edition also features: an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; the hyperboloid model of the hyperbolic plane; a brief discussion of generalizations to higher dimensions; many new exercises.

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.