This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading. Most important to this text: Emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves Presents residue theory in the affine plane and its applications to intersection theory Methods of proof for the RiemannRoch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.