This book provides an introduction to propagator theory. Propagators, or evolution families, are two-parameter analogues of semigroups of operators. Propagators are encountered in analysis, mathematical physics, partial differential equations, and probability theory. They are often used as mathematical models of systems evolving in a changing environment. A unifying theme of the book is the theory of Feynman-Kac propagators associated with time-dependent measures from non-autonomous Kato classes. In applications, a Feynman-Kac propagator describes the evolution of a physical system in the presence of time-dependent absorption and excitation. The book is suitable as an advanced textbook for graduate courses.

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.