A concise introduction to numerical methodsand the mathematical framework neededto understand their performanceNumerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems.Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including:Euler's methodTaylor and Runge-Kutta methodsGeneral error analysis for multi-step methodsStiff differential equationsDifferential algebraic equationsTwo-point boundary value problemsVolterra integral equationsEach chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.