This volume includes both rigorous asymptotic results on the inevitability of random knotting and linking, and Monte Carlo simulations of knot probability at small lengths. The statistical mechanics and topology of surfaces on the d-dimensional simple cubic lattice are investigated. The energy of knots is studied both analytically and numerically. Vassiliev invariants are investigated and used in random knot simulations. A mutation scheme which leaves the Jones polynomial unaltered is described. Applications include the investigation of RNA secondary structure using Vassiliev invariants, and the direct experimental measurement of DNA knot probability as a function of salt concentration in random cyclization experiments on linear DNA molecules. The papers in this volume reflect the diversity of interest across science and mathematics in this subject, from topology to statistical mechanics to theoretical chemistry to wet-lab molecular biology.

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.