This book surveys the application of the recently developed technique of the wavelet transform to a wide range of physical fields, including astrophysics, turbulence, meteorology, plasma physics, atomic and solid state physics, multifractals occurring in physics, biophysics (in medicine and physiology) and mathematical physics. The wavelet transform can analyze scale-dependent characteristics of a signal (or image) locally, unlike the Fourier transform, and more flexibly than the windowed Fourier transform developed by Gabor fifty years ago. The continuous wavelet transform is used mostly for analysis, but the discrete wavelet transform allows very fast compression and transmission of data and speeds up numerical calculation, and is applied, for example, in the solution of partial differential equations in physics. This book will be of interest to graduate students and researchers in many fields of physics, and to applied mathematicians and engineers interested in physical application.

Rezensionen ( 0 )
Noch keine Rezensionen vorhanden.
Sie können die Erörterung eröffnen.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.