Новый ум короля. О компьютерах, мышлении и законах физики
- 2008 г.
- 9785971018124
Материалы
Отзывы
Раз в месяц дарим подарки самому активному читателю.Оставляйте больше отзывов, и мы наградим вас!
Цитаты
Значит, несмотря на конечность числа внутренних состояний, наше устройство должно быть приспособлено для работы с входными данными неограниченного объема. Более того, устройство должно иметь возможность использовать внешнюю память неограниченного объема (наши «черновики») для хранения данных, необходимых для вычислений, а также уметь выдавать окончательное решение любого размера. Поскольку наше устройство имеет только конечное число различных внутренних состояний, мы не можем ожидать, что оно будет «хранить внутри себя» все внешние данные, равно как и результаты своих промежуточных вычислений. Напротив, оно должно обращаться только к тем данным и полученным результатам, с которыми оно работает непосредственно в настоящий момент, и уметь производить над ними требуемые (опять же, в данный момент) операции.
-
- 0
- 0
Концепция Тьюринга
Попробуем представить себе устройство, предназначенное для выполнения некоторой (конечноопределенной) вычислительной процедуры. Каким могло бы быть такое устройство в общем случае? Мы должны быть готовы к некоторой идеализации и не должны обращать внимания на практические аспекты — мы на самом деле рассматриваем математическую идеализацию «машины». Нам нужно устройство, способное принимать дискретное множество различных возможных состояний, число которых конечно (хотя и может быть очень большим). Мы назовем их внутренними состояниями устройства. Однако мы не хотим, чтобы объем выполняемых на этом устройстве вычислений был принципиально ограничен. Вспомним описанный выше алгоритм Евклида. В принципе, не существует предельной величины числа, после которой алгоритм перестает работать. Этот алгоритм, или некая общая вычислительная процедура, будет тем же самым независимо от того, сколь велики числа, к которым он применяется.
-
- 0
- 0
Проблема Гильберта, которую исследовал Тьюринг (Entscheidungsproblem), не зависит от какого-либо конкретного построения математики в терминах аксиоматической системы. Вопрос формулировался так: существует ли некая универсальная механическая процедура, позволяющая, в принципе, решить все математические задачи (из некоторого вполне определенного класса) одну за другой?
-
- 0
- 0
Прежде всего следует помнить, что «машина» Тьюринга принадлежит области «абстрактной математики» и ни в коем случае не является физическим объектом. Это понятие было введено в 1935–1936 годах английским математиком и кибернетиком Аланом Тьюрингом, внесшим огромный новаторский вклад в развитие компьютерной науки (Тьюринг [1937]). Тьюринг рассматривал задачу весьма общего характера (известную как проблема алгоритмической разрешимости), которая была поставлена великим немецким математиком Давидом Гильбертом частично в 1900 году на Парижском Конгрессе математиков (так называемая «десятая проблема Гильберта»), и более полно — на международном конгрессе 1928 года в Болонье.
-
- 0
- 0
Слово «алгоритм» происходит от имени персидского математика IX века Абу Джафара Мухаммеда ибн Мусы аль-Хорезми, написавшего около 825 года н. э. руководство по математике «Kitab al-jabr wa’l-muqa-bala», которое оказало значительное влияние на математическую мысль того времени. Современное написание «алгоритм», пришедшее на смену более раннему и точному «алгоризм», своим происхождением обязано, скорее всего, ассоциации со словом «арифметика»[39]. (Примечательно, что и слово «алгебра» происходит от араб
-
- 0
- 0